Continue cavity wall insulation to top of parapet.

Insulation upstand having a minimum R-value of 1.10 m²K/W (in heat flow direction perpendicular to wall surface) around parapet.

Ensure roof insulation tightly abuts inner face of parapet wall.

Partial fill insulation to be secured firmly against the inner leaf of the cavity wall.

Roadstone Thermal Liteblock at upstand level down to ceiling level.

300mm min. between top of insulation upstand and bottom of horizontal roof insulation.

Roadstone Custom Psi values

<table>
<thead>
<tr>
<th>U Value Range (W/m²K)</th>
<th>Part L (Ψ)</th>
<th>Roadstone TLB Psi (Ψ) Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.21</td>
<td>0.152</td>
<td>0.128</td>
</tr>
</tbody>
</table>

As modelled by NSAI registered Thermal Modellers:

The diagrams, drawings and details included in this brochure are for indicative purposes only. They do not constitute nor should they be relied upon as giving/courting any design detail. They focus on the issues of thermal performance only. Insulation thicknesses of the main building elements have not been provided as these are dependent on the thermal properties of the materials chosen, as well as on the desired U value. These diagrams, drawings and details illustrate good practice for the design and construction of interfaces solely in connection with thermal performance. The product should be used with due regard to all other requirements imposed by the building Regulations and Advice should be sought from a design professional in connection with the use of this product where required.

All options pass fRsi assessment, no surface condensation predicted.

*Note:

In the 0.21 U Value Range the model surpasses the default Psi value and therefore a y-value of 0.08 can be assumed using this option without a y-value calculation, provided all other details in the building comply with the published ACDs and/or Roadstone modelled details.

Copyright © ROADSTONE This information is supplied in good faith and no liability can be accepted for any loss or damage resulting from use.